
Developing Dynamic
Web Pages: Part 2
by Steve Troxell

Back in the November issue,
Bob Swart got us rolling with

building Internet CGI applications
using Delphi 2. Last month, we
developed a rudimentary TCGI
component to take care of the
nitty-gritty details of acquiring
user-supplied data from the web
browser through either standard
CGI or WinCGI. With this founda-
tion in place, this month I’d like to
take you through the development
of the web-version of the BDE-
aware Article Index Database
(TDMAid) for The Delphi Maga-
zine, which Bob first revealed back
in July (Issue #11). Along the way
we’ll get a chance to see TCGI in
action. I’ll try to minimize covering
the same ground that Bob did back
in November. Our focus here is on
the specifics of TDMAid, in particu-
lar accessing BDE databases on a
web server. The TDMAid Online
application can be seen at

http://members.aol.com/delphimag

TDMAid Online Architecture
In designing TDMAid Online we
must keep two things in mind. First,
the user’s experience with the
behavior and features of the site
should be substantially similar to
the offline version, while still ex-
ploiting the conventions and capa-
bilities of the web arena. Second,
since the TDMAid database is up-
dated regularly each month, main-
tenance of the site should be as
painless as possible. With these
two objectives in mind, TDMAid
Online’s query page looks and acts
virtually the same as the offline
version’s query dialog (see Figure
1). Also, the two versions use ex-
actly the same database (a set of
Paradox tables) so that when
updates are made, there is no con-
version of data necessary – the new
database files are simply copied to
the appropriate location on the
web server.

The Query Page
TDMAid Online, like most CGI ap-
plications, is a two-stage process: a
query page where the user defines
their criteria, and a response page
where the matching results are
presented. On the query page, the
user may select articles by type,
author, issue or keyword. The arti-
cle type, author and keyword
select controls are listboxes popu-
lated from the database.

My first inclination was for this
page to build itself through a CGI
program, filling its listboxes from
the database each time. This would
have reduced updating the site
each month to a single step: copy
new database files. However, the
data is really not volatile enough to
warrant a CGI application, which
would have slowed down the
page’s load time somewhat. Since
the database remains static for
about a month at a stretch, we’ll
just regenerate a static web page
once when we update the data-
base. An abridged version of the

HTML code for this page is shown
in Listing 1.

From Listing 1, you can see that
the FORM statement defines a
program called TDMAID2.EXE in
the same directory as this HTML
page to be the CGI program to proc-
ess this request when the user
clicks the Search button. It is impor-
tant to remember that execute
permissions must be granted to
the directory containing the CGI
program.

To produce the query page, we
can write a simple non-CGI Delphi
application (called TDMAID1) that
outputs a regular text file contain-
ing the HTML code for our query
page. Since no CGI access is
required for this stage, and Bob
already covered the details of con-
structing HTML query pages, I
won’t dwell on the TDMAID1 pro-
gram (but you can examine it on
this issue’s disk). The important
thing to note is that when the user
clicks Search, the contents of the
page’s data controls are posted as

➤ Figure 1

18 The Delphi Magazine Issue 17

CGI variables to the TDMAID2
program we’re about to get into.

The CGI App
TDMAID2 is a simple console app
divided into three main units.
MAIN2.PAS processes the input
through the TCGI component and
produces the output response
page, AIDDATA.PAS is a data mod-
ule containing the TQuery compo-
nents we use to access the
database, and BLDSQL.PAS con-
tains a procedure to construct the
SQL query which finds the desired
articles. With the exceptions that
we are using TCGI to read our input
values and that we are creating an
HTML page as output, there is
nothing out of the ordinary about
this code. We simply access the
data components as we would with
any other Delphi application.

MAIN2 contains a procedure
called Process which is called from
the .DPR file as soon as the pro-
gram begins executing (see Listing
2). Like the offline version, TDMAid
Online uses the values entered by
the user to build an SQL statement
on the fly which finds the matching
articles in the database. The first
thing the Process procedure does is
extract values from the form vari-
ables passed in from the browser
and passes them off to the query
building routine. Remember that
our TCGI component automatically
reads in the CGI environment vari-
ables as soon as the program starts
up, so they are available to us in the
CGI.FormItems string list. That’s all
that’s needed to process the CGI
input. Then we pass the form
values into the BuildSQL method in
the BLDSQL unit, which will popu-
late the SQL property of the
ArticleQuery component.

I won’t show the BuildSQL proce-
dure because it is substantially
identical to the code used in the
offline version Bob wrote about
originally in last July’s issue. Given
the data values passed into it, and
assuming that any values that are
not to be used in the search are
empty strings, BuildSQL simply
constructs the appropriate SQL
statement to fetch the matching
articles out of the database. Since
the query building code is fairly

extensive and is identical in both
the offline and online versions, we
can compile the BldSQL unit into
both versions and share the code
between them.

Once the SQL statement is built,
we can run the query and use its
output to build our HTML response
page (Listing 2). As you can see, we
simply read the values from the
query component and use them in
constructing our HTML output for
the response page (see Figure 2).

New Keyword Search Feature
Since you first heard about
TDMAid in July, Bob has been busy
making improvements. The most
significant feature is the addition of
a keyword search function. Pre-
viously, you could only search for

articles by keyword by selecting a
phrase from a list of all possible
keywords. The editorial staff have
been very busy revamping the key-
words assigned in the database.
The result of this is that the key-
words are more extensive, more
detailed and more useful for
searching. The downside is that
there are a lot of them! There are
nearly 2000 unique keywords at the
time of this writing.

To make keywords a little easier
to work with, the Keyword Search
function was added (the original
keyword mechanism is still avail-
able and is called Keyword Select).
Here you simply type in freeform
text, which is then used as a sub-
string search against the keyword
table. Therefore, if you enter DLL,

<HTML><HEAD> <TITLE>The Delphi Magazine Article Index Database - Search
Form</TITLE> </HEAD><BODY>

 Click to return to The Delphi Magazine main page...
<P><IMG SRC="http://members.aol.com/DelphiMag/dmlogo2a.gif"
 ALT="The Delphi Magazine" ALIGN=CENTER>
Article Index Database</P>
<HR>
<TABLE BORDER=0 WIDTH="100%" HEIGHT="10">
<TR><TD>
<H3>Database Last Updated: 19 Nov 96</H3>
</TD>
<TD ALIGN=RIGHT>
<H3>Current Through Issue #16 (December 1996)</H3>
</TD></TR>
</TABLE>
<HR>
Enter your search criteria:

<FORM METHOD="POST" ACTION="tdmaid2.exe">

<TABLE BORDER=0 WIDTH="300" HEIGHT="60">
<TR><TD WIDTH="35%">Article Type</TD>
<TD><SELECT NAME="ArticleType" SIZE=1>
 <OPTION><Any></OPTION>
 <OPTION>Article</OPTION>
 <OPTION>Review</OPTION>
 <OPTION>Tip</OPTION>
 <OPTION>Clinic</OPTION>
 <OPTION>Disk</OPTION>
 <OPTION>Misc</OPTION>
</SELECT>
</TD></TR>
<TR><TD WIDTH="35%">Issue #</TD>
<TD><INPUT TYPE="TEXT" NAME="IssueNo" SIZE=11></TD></TR>
<TR><TD WIDTH="35%">Author</TD>
<TD><SELECT NAME="Author" SIZE=1>
 <OPTION><Any></OPTION>
 <OPTION VALUE="58">Allen Bauer</OPTION>
 <OPTION VALUE="62">Andrew McLellan</OPTION>
 (. . . excess items omitted . . .)
</SELECT>
</TD></TR>
<TR><TD WIDTH="35%">Keyword Select</TD>
<TD><SELECT NAME="KeywordSelect" SIZE=1>
 <OPTION><Any></OPTION>
 <OPTION>$APPTYPE CONSOLE</OPTION>
 <OPTION>$C compiler directive</OPTION>
 <OPTION>$I compiler directive</OPTION>
 <OPTION>$M+ compiler directive</OPTION>
 (. . . excess items omitted . . .)
</SELECT>

</TD></TR>
<TR><TD WIDTH="35%">Keyword Search</TD>
<TD><INPUT TYPE="TEXT" NAME="KeywordSearch" SIZE=29></TD></TR>
</TABLE>

<INPUT TYPE="SUBMIT" NAME="SubmitBtn" VALUE="Search">
<INPUT TYPE="RESET" NAME="ResetBtn" VALUE="Reset">
</FORM>
</BODY></HTML>

➤ Listing 1

January 1997 The Delphi Magazine 19

you’ll hit articles with the key-
words Writing DLLs and Creating
DLLs. To accomplish this, we use
the LIKE operator in SQL, as shown
in Listing 3.

A little quirk in LIKE you should
be aware of: LIKE for Local SQL is
case-insensitive in the 16-bit BDE,
but is case-sensitive in the 32-bit
BDE. To be assured of case-insensi-
tivity, we always compare upper-
case data to uppercase text.

Console Apps And Exceptions
CGI applications should be com-
piled as console apps (that’s why
we have $APPTYPE CONSOLE at the
beginning of our program). This is
because there should be no inter-
action between the program and

the server machine which would
result in a window or dialog that
requires user intervention. When
this happens to an Internet user
running your CGI app, their
browser appears to hang up since
it has sent a request to run the CGI
program and is waiting for a re-
sponse HTML page to come back
from it. The CGI program keeps
running until someone clears the
dialog on the server machine.

When a console program gener-
ates a runtime error or raises an
exception, Delphi’s error-handling

mechanism displays the error mes-
sages as regular text output on the
standard output device. If you look
at the exception handling source
code for SysUtils, you’ll see that it
examines the system variable
IsConsole to decide how to display
the exception message. Unfortu-
nately, there is a bug in Delphi in
that it does not set the IsConsole
variable until after all unit initializa-
tion code has been executed.
Therefore, if an exception occurs in
this area in your console app,
Delphi displays the error message

procedure Process;
var A, I: Integer;
 FieldName: string;
 ArticleType: string;
 AuthorName: string;
 IssueNo: string;
 KeywordSelect: string;
 KeywordSearch: string;
 NoneFOund: Boolean;
begin
 { Extract form variables and hand off to query builder }
 with CGI.FormItems do begin
 ArticleType := Values[’ArticleType’];
 if ArticleType = ’<Any>’ then ArticleType := ’’;
 AuthorName := Values[’Author’];
 if AuthorName = ’<Any>’ then AuthorName := ’’;
 IssueNo := Values[’IssueNo’];
 KeywordSelect := Values[’KeywordSelect’];
 if KeywordSelect = ’<Any>’ then KeywordSelect := ’’;
 KeywordSearch := Values[’KeywordSearch’];
 end;
 BuildSQL(ArticleType, AuthorName, IssueNo, KeywordSelect,
 KeywordSearch, AIDDataModule.ArticleQuery.SQL);
 with CGI do begin
 WriteLn(’<HTML><HEAD>’);
 WriteLn(’<TITLE>TDMAid - Query Results</TITLE>’);
 WriteLn(’</HEAD><BODY>’);
 WriteLn(’
’+
 ’Click to return to The Delphi Magazine main ’+
 ’page...
’);
 WriteLn(’<A HREF="’ + PagesURL +
 ’tdmaid.htm">Return to Search Form...
’);
 try
 with AIDDataModule.ArticleQuery do begin
 NoneFound := True;
 Open;
 try
 NoneFound := Eof;
 WriteLn(’<CENTER>’);
 WriteLn(’<H1>The Delphi Magazine - ’+
 ’Article Index Database</H1>’);
 if NoneFound then
 WriteLn(’<H3>Query Results - ’+
 ’No entries matched your selection</H3>’)
 else
 WriteLn(’<H3>Query Results -’ +
 IntToStr(RecordCount)+
 ’ entries matched your selection</H3>’);
 WriteLn(’</CENTER>’);
 if not NoneFound then WriteLn(’<HR>
’);
 while not Eof do begin
 { Show Article Information... }
 WriteLn(’<H2>’ + FieldByName(’Title’).AsString +
 ’</H2>
’);
 Write(’Type: ’ + FieldByName(’
 Article Type’).AsString + ’, ’);
 Write(’Issue #’ +
 IntToStr(FieldByName(’Issue #’).AsInteger));
 Write(’ (’ + FieldByName(’MonthYear’).AsString +
 ’), ’);
 Write(’Page #’ + IntToStr(FieldByName(’
 Page Number’).AsInteger) + ’
’);
 WriteLn(’
’);

 Write(’Summary: ’);
 WriteBLOB(TBlobField(FieldByName(’Summary’)));
 WriteLn(’

’);
 { Show Keywords... }
 with AIDDataModule.KeywordQuery do begin
 ParamByName(’ArticleID’).Value :=
 AIDDataModule.ArticleQuery.FieldByName(’
 Article ID’).Value;
 Open;
 try
 Write(’Keywords: ’);
 Write(
 AIDDataModule.KeywordQueryKeyword.Value);
 Next;
 while not EOF do begin
 Write(’, ’ +
 AIDDataModule.KeywordQueryKeyword.Value);
 Next;
 end;
 WriteLn(’

’);
 finally
 Close;
 end;
 end;
 { Show Author Information... }
 for A := 1 to 3 do begin
 FieldName := ’Author ’ + IntToStr(A);
 if not FieldByName(FieldName).IsNull then begin
 with AIDDataModule.AuthorQuery do begin
 ParamByName(’AuthorID’).AsInteger :=
 AIDDataModule.ArticleQuery.FieldByName(
 FieldName).AsInteger;
 Open;
 WriteLn(’Author: ’ +
 FieldByName(’Name’).AsString +
 ’
’);
 WriteBlob(TBlobField(FieldByName(
 ’Bio & E-mail address’)));
 WriteLn(’

’);
 Close;
 end;
 end;
 end;
 WriteLn(’
’);
 WriteLn(’<A HREF="’ + BackIssuesURL +
 ’">Click here to order back issues...’);
 WriteLn(’<HR>
’);
 Next;
 end;
 finally
 Close;
 end;
 end;
 finally
 if not NoneFound then begin
 WriteLn(’<H3>End of list.</H3>

’);
 WriteLn(’<A HREF="’ + PagesURL +
 ’tdmaid.htm">Return to Search Form...’);
 end;
 WriteLn(’</BODY></HTML>’);
 end;
 end;
end;

➤ Listing 2

SELECT DISTINCT Article.*
 FROM Article, Keyword
 WHERE Article."Article ID" = Keyword."Article ID")
 AND (UPPER(Keyword."Keyword") LIKE “%DLL%”)
 ORDER BY Article."Issue #", ARTICLE."Page Number"

➤ Listing 3

20 The Delphi Magazine Issue 17

in a dialog on the web server ma-
chine and waits for a user to come
along and click the OK button.

You might think that this isn’t
much of an issue. It’s really quite
easy to avoid writing CGI programs
with unit initialization blocks that

might raise exceptions. However,
this same problem exists with Del-
phi’s own units and their initializa-
tion blocks as well. Specifically,
when the CGI application uses BDE
units (DB and DBTables), the BDE is
initialized within a unit initializa-
tion block. If a problem occurs, like
the BDE was not installed on the

server machine, you’ll get an error
dialog on the server.

Conclusion
There you have it, a database-
aware CGI application. Really not
much to it. Just be very careful to
guard against BDE initialization er-
rors and if you’re using NTFS parti-
tioning on your NT web server,
you’ll have to be very careful about
setting up the access permissions
for the anonymous account which
Internet users will be connecting
through. Local SQL with BDE likes
to create temporary files in the BDE
directories, the application direc-
tory and the data directory.
Internet users will need access to
all these places.

In March, we’ll return to look at
server APIs. Specifically, we’ll learn
how to use Microsoft’s Internet
Server API (ISAPI).

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@tpower.com or on
CompuServe at 74071,2207

➤ Figure 2

January 1997 The Delphi Magazine 21

	TDMAid Online Architecture
	The Query Page
	The CGI App
	New Keyword Search Feature
	Console Apps And Exceptions
	Conclusion

